Using Mvmo for Optimal Tuning of Linear Quadratic Regulators for Dfig-wt

نویسنده

  • Ahmed El-Naggar
چکیده

The linear quadratic regulator (LQR) controller is used to enhance the low voltage ride through (LVRT) of doubly-fed induction generator based wind turbines (DFIG-WT). A heuristic optimization method, which is MVMO, is used for optimal design of the LQR weighting matrices Q and R. The objective function of the optimization problem is to minimize the peak short-circuit current and the associated time constants. In order to have realistic values the MVMO problem was constrained by the maximum available machine side converter in order to avoid over-modulation during fault periods. Additionally, the minimum threshold of the stator voltage that will lead to disconnection of the DFIGWT was considered as a constraint. The results show that the new proposed controller enhanced the LVRT.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GA-Based Optimal LQR Controller to Improve LVRT Capability of DFIG Wind Turbines

Nowadays, the doubly-fed induction generators (DFIGs) based wind turbines (WTs) are the dominant type of WTs connected to grid. Traditionally the back-to-back converters are used to control the DFIGs. In this paper, an Indirect Matrix Converter (IMC) is proposed to control the generator. Compared with back-to-back converters, IMCs have numerous advantages such as: higher level of robustness, re...

متن کامل

Haar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems

‎In this paper‎, ‎Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems‎. ‎Firstly‎, ‎using necessary conditions for optimality‎, ‎the problem is changed into a two-boundary value problem (TBVP)‎. ‎Next‎, ‎Haar wavelets are applied for converting the TBVP‎, ‎as a system of differential equations‎, ‎in to a system of matrix algebraic equations‎...

متن کامل

Discrete-time repetitive optimal control: Robotic manipulators

This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control law is in the class of torque-based control in which the joint torques are generated by permanen...

متن کامل

AN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION

This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...

متن کامل

Enhancement of Articulated Heavy Vehicle Stability by Optimal Linear Quadratic Regulator (LQR) Controller of Roll-yaw Dynamics

Non-linear characteristic of tire forces is the main cause of vehicle lateral dynamics instability, while direct yaw moment control is an effective method to recover the vehicle stability. In this paper, an optimal linear quadratic regulator (LQR) controller for roll-yaw dynamics to articulated heavy vehicles is developed. For this purpose, the equations of motion obtained by the MATLAB sof...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016